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Orientational Structure of Dipolar 
Hard Spheres near a Hard Neutral Wall 
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Spherical boundaries are used in a Monte Carlo simulation to calculate the 
angular structure of dipolar hard spheres near a neutral hard wall. 

KEY W O R D S :  Surface structure; Monte Carlo simulation; dipolar hard 
sphere. 

1. I N T R O D U C T I O N  

In recent molecular dynamics simulations Bossis and coworkers (1 4) 
demonstrated the usefulness of using an isolated spherical sample to deter- 
mine the bulk properties of dipolar systems. More specifically, their 
calculations show that for system sizes of the order of 100(~1500 particles 
(in three dimensions) a large inner region of the sample has constant den- 
sity and exhibits macroscopic dielectric behavior thus allowing a reliable 
determination of the dielectric properties, both static and dynamic. (1) 

Analogously, Powles and coworkers determine the dielectric 
constant (s) and surface properties (6'7) bf a microscopic drop of polar liquid 
in equilibrium in its own vapor. 

In the present work a spherical volume simulation is applied to study 
the orientational structure of dipolar molecules near a hard wall. In this 
case the surface boundary is simply-assumed to be impenetrable to the par- 
ticles. Again a system size of 1000-1500 particles appears sufficient to 
obtain most of the surface properties independent of curvature even for 
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fairly high dipole moments. At the same time the bulk properties can be 
determined. 

For dipolar systems these boundaries seem vastly more convenient 
than the more traditional rectangular ones (two opposite faces acting as 
walls) to which the Ewald summation or the reaction field methods 
necessary to correct for the long-range dipolar interaction would be 
extremely time-consuming to apply. 

In the Monte Carlo calculations which will be described in Section 2 
we adopt the simple model of dipolar hard spheres near a hard neutral 
wall. In this model, the particles interact among themselves through the 
potential 

V ij( r ij ) = +o0, r ij <<. a 

fl~2 (1) 
- r~ ~11=(U)' r ~ > G  

and with the wall via the wall-particle interaction 

Vwi(r i )= +o(3, ri>/ R (2) 

In Eq. (1) 

~ l 1 2 ( / j )  = 3(Si  "rij)(sj 'r i j  ) 
r~ s~'sj (3) 

and # is the dipole moment, k T = f 1 - 1  the temperature, si a unit vector in 
the direction of the ith dipole moment, r u = r j - r i ,  ru= Ir~j[ where the 
location of particle i, r/, is measured from the center of the simulation 
sphere of radius R. 

The main aim of our work is to determine the variations of the density 
profile from a nonpolar to a highly polar hard sphere system. These results, 
including bulk properties, are given in Section 3. Our main conclusions will 
be summarized in Section 4. 

2. C O M P U T E R  S I M U L A T I O N S  

Monte Carlo calculations were carried out for a system of N =  1061 
dipolar hard spheres the centers of which were constrained to a spherical 
volume S with radius R such that the average density was 

NG 3 
Pav 0"3 - -  

(4./3) R 3 
=0.8 
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The dipole moments #,2 = 1~2/ff3kT ranged from 0 (pure hard spheres) to 3. 
For the highest dipole moment ( # , 2 =  3) a somewhat larger system was 
considered as well to detect possible curvature effects. For each case a total 
of 5.7million configurations was generated after equilibrium. [The 
calculations were performed on the Cray-1 at t~cole Polytechnique 
(Palaiseau).] 

3. R E S U L T S  

3.1.  " B u l k "  P r o p e r t i e s  

Reliable surface properties can only be obtained if the central region of 
the system behaves as an homogeneous bulk system. As a check we 
calculated the potential energy, pair correlation function, and dielectric 
constant in the inner region of the simulation sphere. More precisely, we 
define a "bulk" energy/~0 as the average energy of a particle belonging to 
the sphere So concentric to S and having radius Ro = 0.4R, i.e., 

i~So, j~S 

The projections g~176176 hll~ and hllZ(r/j) of the pair distribution 
function g(ro., ~2 i, Oj) on the rotational invariants ~b~176176 = 1, q~l~~ 
and ~b 112 given by (3) were evaluated for all pairs of particles (~/) such that 
i~So,  j ~ S ,  and ]r j-r i]  ~<Ro. 

Finally, the dielectric constant was estimated from the mean square 
dipole moment 

g = \ Ni(Ro) / (5) 

through use of the relation ~l) 

(e - 1)[(e + 2)(2e + 1) - 2(Ro/R)3(e - 1) 2 ] 
9e(~ + 2) = yg (6) 

where 

4xPfl#2 (7) 
Y= 9 

In (5) Si(Ro) denotes a sphere of radius Ro centered at particle i t  So and 
Ni(Ro) the number of particles inside this sphere. Equation (6) applies, 
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strictly speaking, only to a spherical sample centered at the origin and not 
to the decentered ones used in Eq. (5). Correction terms have been 
evaluated by a method analogous to that described by Bossis (2> for two- 
dimensional systems, but, as they turn out to be smaller than the statistical 
error in our calculations, have been neglected for the present purposes. 

To decide whether the results obtained in the "bulk" region So are 
those of a homogeneous system we compare them with QHNC integral 
equation (8/ results. For the bulk density considered (po 0"3--- 0.7, see below) 
and dipole moments #*2<2 these are sufficiently accurate ~ that one can 
avoid performing "exact" calculations for an homogeneous system using, 
e.g., Ewald summation or reaction field methods. 

The projections h 11~ and h ~12 are compared in Figs. 1 and 2 for 
po 0-3= 0.7 a n d / t * 2 =  2.0. The agreement is excellent. The slight discrepan- 
cies in h 110 merely reflect a (small) deficiency of the QHNC equations. (9/ 

The energies do compare favorably (cf. Table I); the dielectric con- 
stants, on the contrary, are not in good agreement. This result is, however, 
not surprising as it is now well known that the QHNC equation 
overestimates the dielectric constant. ~1'9'1~ Very recently, it has been 
shown ~11) that for dipolar hard spheres the full solution of the HNC 
equation gives a better estimate of e. The corresponding values are seen to 
be in much closer agreement with the value derived from (6). 

0. 

1.0 
Fig. 1. 

t I I I n I ,,, 
1.5 2.0 2.5 r/o 

Bulk correlation function h112(r) at po0-3=0.7 and /z '2=2.  Solid line: QHNC 
equation; open circles: present Monte Carlo calculations (see text). 
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h110 
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1.0 1.5 2.0 2.5 r /a  

Fig. 2. Bulk correlation function h n~ at p0 O'3= 0.7 and #,2= 2. Solid line: QHNC equation; 
open circles: present Monte Carlo calculations (see text). 

3.2 .  S u r f a c e  P r o p e r t i e s  

3.2.1. Density Profile. The density profiles defined by 

p(r) = <~. 5 ( r -  ri) ) (8) 

are shown in Fig. 3 for #,2 = 0, 1, 2, and 3. With increasing dipole moment 
the main changes occur in the immediate vicinity of the wall. The contact 
value decreases as a result of the lowering of the bulk pressure in accord 
with the exact relation 

p(0) = flPo (9) 

The latter relation is satisfied to a fair degree of precision (cf. Table I) tak- 
ing into account the combined statistical uncertainties on both the contact 
value and the "bulk" pressure calculated in So by use of the relation 

E ] flPo = Po 1 +-~- pog~176176 (10) 

The subsequent layering which extends over a region of 30- reflects mainly 
packing effects. A small shift away from the wall occurs in the positions of 
the first minimum and second maximum at the highest dipole moment 
accompanied by a small reduction of the amplitude of the oscillations. In 
all cases the "bulk" density is 1000.3 --~0.7. 

822/40/1-2-3 
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03p(r) 

3. 
+ 

2 .  - 

J I i I i I I 
1.0 2.0 3.0 r/o 

Fig. 3. Density profile at /90(73 = 0.7 as a function of dipole moment.  Solid line: pure hard 
spheres; solid circles: g ,2  = 1; open circles: # ,2  = 2; triangles:/~,2 = 3 for system of 1061 par- 
ticles and crosses for systems of 1505 particles (for r > 0.5(7 the profiles are identical in the 
statistical uncertainties). 

It is noteworthy that the pure hard sphere density profile is in 
excellent agreement with previous ones (12'13) using a rectangular simulation 
cell and periodic boundary conditions in the directions parallel to the wall} 
This result gives strong support for the adequacy of the present geometry. 

3.2.2. Angular  Dens i ty  Profi le .  The orientational structure of 
the dipoles in the vicinity of the wall is obtained from the angle dependent 
one particle distribution function 

p(r,s 0 ) = { ~  6 ( r -  ri) 6 ( ~ -  g2i) 1 (11) 

evaluated from a histogram of resolution Ar = 0.08a and A cos 0 = 2/11. In 
(11) 0 denotes the angle between the dipole moment !1 and the direction of 
r (perpendicular to and pointing toward the wall). Figure4 shows 
p(r, O)/po for several fixed orientations of the dipole moment, whereas 
Fig. 5 shows p(r, O)/p(r) as a function of cos 0 for increasing values of the 
distance from the wall. Statistics have been improved by averaging over the 
equally probable orientations 0 and 7r-0. 

2 Unfortunately the authors of Ref. 13 do not give a graph of their density profile calculated at 
the density p(73 _ 0.7. 
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Fig. 4. Orientational density profile for fixed orientations of the dipole moment with respect 
to the direction normal to the walt. Solid circles: /~,2= 1; open circles: #*2=2;  crosses: 
,u*2-  3. 

From these figures it is apparent that in the vicinity of the wall the 
dipoles show a clear preference, especially for high dipole moments, to 
align parallel to the wall in agreement with the conclusions reached for the 
waterlike models(14 18); when one moves away from the wall the orien- 
rational order diminishes progressively. In the regions of the minima of the 
density oscillations a similar pattern subsists whereas near the maxima a 
very slight preference for orientations perpendicular to the wall occurs 
(cf. Fig. 5). This tendency is observed for all values of the dipole moment. 
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Fig. 5. 
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Variation of the angular probability distribution function p(r, O)/p(r) with distance 
from the wall. Solid circles: # , 2 =  1; open circles: ~ ,2= 2; triangles: # ,2=  3. 

4. S U M M A R Y  

The bulk and surface properties of a system of dipolar hard spheres 
confined by a spherical impenetrable neutral wall have been calculated by 
Monte Carlo. The density profile is mainly determined by steric effects 
except in the close vicinity of the wall where the dipole interactions pull the 
particles away from the wall as evidenced by the decrease of the contact 
value with increasing dipole moment. The preferential orientations of the 
dipoles in the layer adjacent to the wall and in the regions of the density 
minima is parallel to the wall. In the regions of the density maxima there is 
a slight preference for perpendicular orientations. 

Varying the system size from 1000 to 1500 particles does not 
appreciably affect the density profile. The independence of the latter on cur- 
vature for systems larger than a thousand particles is further corroborated 
by the fact that for pure hard spheres it is undistinguishable from that 
obtained by using a rectangular simulation cell with periodic boundary 
conditions in the directions parallel to the walls. 

Similar conclusions have been reached in a study by Thomson et al/~9) 
of the particle number dependence of the surface properties of Lennard- 
Jones drops. In this article it is established that the surface tension 
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calculated with systems of N ~  1000 particles are erroneous by 20 %-50 %. 
An estimation of flVa2 can be obtained from the scaled particle theory (13'22~ 
which gives flVcr2=-0.94, -0.74,  -0.48,  and -0.37,  respectively, for 
/~,2 = 0, 1, 2, and 3. 

We conclude that the use of a spherical boundary is a convenient way 
to determine both the surface and bulk properties of polar systems, 
avoiding in particular the cumbersome Ewald summation method. 
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